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Abstract. Traditional analyses (e.g., Schnabel 1938 or Chapman 1954) of sequential mark-recap- 
ture experiments (Petersen and Schnabel type) yield population estimates with substantial negative 
bias and overly large confidence intervals if the combination of the number of animals marked and 
examined falls too low. To address these problems, sequential mark-recapture experiments are cast 
into a Bayesian framework using a "noninformative" discrete uniform improper prior (a priori the- 
oretical) distribution. Some properties of the posterior distribution (probability of each population 
size given the data) are briefly and informally discussed (inference, convergence, mean, mode, median, 
and treatment of nuisance parameters). A sequential Bayes computational algorithm, suitable for 
microcomputers, is given. Several examples are presented as a practical guide to computing estimates. 

For relatively small sample sizes, the Bayesian approach yields larger mean abundance estimates 
than traditional methods. There is little difference in these estimates for larger sampling efforts. 
Advantages of the approach include the following: the probability of observing the data at all feasible 
population sizes is calculated exactly; the method works for all cases regardless of sample size or 
sampling procedure; a plot of successive posterior distributions can be used as a visual diagnostic of 
conformity with basic assumptions; and finally, inferences can be made directly, since the end product 
completely describes the uncertainty of the population size given the data. 

Key words: Bayesian inference; capture-recapture; improper prior; likelihood; mark-recapture; 
nonparametric; population estimation; sequential Bayes. 

the number of animals marked and the total number 

The idea of obtaining information about a popula- later examined falls too low. 

tion by marking or  labeling some of its members can T o  overcome the above difficulties, Bayesian argu- 

be traced back several centuries. The  simplest mark- ments were used to obtain a n  estimate of  the number 

recapture procedure is the well-known two-stage Pe- of Illinois m u d  turtles (Kinosternon flavescens spoo- 

tersen experiment, which can be extended to multiple neri) utilizing a relict prairie habitat, Big Sand Mound, 

recapture census in which consecutive samples are tak- located in Iowa (J. Bickham and B. J. Gallaway, per- 

en from the population. The  theory to  develop popu- sonal communication). The turtle (since found by Hou- 

lation estimates from sequential samples has been dis- seal et al. [I9821 and  Berry and  Berry [I9841 to be 

cussed by Schnabel(1938), Schumacher and Eschmeyer synonymous with the yellow m u d  turtle, Kinosternon 

(1943), Chapman (1948, 195 1, 1954), Bailey (1951), flavescens flavescens) had been proposed to be listed 

DeLury (1951, 1958), Cormack (1968), Seber (1973, as  rare and endangered based in part on  the assumption 

1982), and others. that there were n o  more than 650 living representatives 

While the published methodologies perform well if spread among three habitats in  Iowa and Illinois, most 

large samples are obtained relative to  the population living a t  Big Sand Mound, Iowa. The  issue of the actual 

level, they have difficulty when the sample is small (see number of turtles occupying the Big Sand Mound hab- 

Cormack 1968 o r  Seber 1973). For  example, the lower itat became one of the focal points of  controversy sur- 

bounds of calculated confidence intervals of  a popu- rounding the proposed listing. 


lation estimate are sometimes less than the unique A sequential mark-recapture experiment was con- 


number of animals sampled, but for reporting purposes ducted during the spring and summer of 1979 (M. D.  


are rounded upwards to  the number of animals actually Springer and B. J. Gallaway, personal communication) 


marked. Chapman (195 l), Robson and Regier (1964), to  address the question; however, only limited num- 

Ricker (1 975), and others have pointed out that a pro- bers of turtles could be captured. (From 88  marks ap- 

nounced negative bias will occur if the combination of plied only five recaptures were made, with never more 
than one recapture in  a sampling period.) Strong crit- 

Manuscript received 20 April 1984; revised 1 May 1985; icisms of subsequent population estimates were leveled, 
accepted 19 July 1985. mainly because of the extremely broad confidence in- 

I 
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tervals (88 to 941 1 turtles) associated with the tradi- 
tional estimates. In any case, orthodox estimation pro- 
cedures could not cope with small sample sizes, even 
though the basic assumptions for a mark-recapture ex- 
periment had been well met (J. Bickham and B. J. 
Gallaway, personal communication). 

While seemingly novel, the Bayesian approach to 
obtain population estimates was first used by LaPlace 
in the eighteenth century (Stigler 1975). More recently, 
Freeman (1 973a, b), Gaskell and George (1 972), and 
Carle and Strub (1978) have applied Bayesian methods 
to a variety of population estimation problems. John- 
son (1977) provides a useful review of elementary ap- 
plications of Bayesian statistics to problems faced by 
wildlife biologists. 

Subsequent study and extension of the method has 
revealed that it is broadly applicable to the mark-re- 
capture experiment. While the approach is intensive 
in computation, the advent of cheap, universally avail- 
able computing power has made the algorithm both 
tractable and convenient. The purpose of this paper is 
to cast mark-recapture experiments into a Bayesian 
framework from which estimation properties may be 
determined from the well-developed theory of Bayes- 
ian inference in statistical analysis. In addition, a sim- 
ple, efficient algorithm is presented for the calculation 
of the posterior probability distribution and is illus- 
trated with some examples. 

AVAILABLE AND ASSUMPTIONSINFORMATION 

If indistinguishable marks or labels are applied to 
individuals from a population with consecutive sam- 
ples, and these samples are examined for recaptured 
marks, then the following information is available: 

'44, = total marked animals at large at the start of 
the t th sampling interval; 

C, = total number of individuals sampled during 
interval t ;  and 

R, = number of recaptures in the sample C,. 

To make any form of mathematical expression tract- 
able, a number of assumptions must be satisfied. These 
assumptions have been presented in various forms and 
discussed by a number of authors: Cormack (1968), 
Overton (1 97 l), Seber (1 973), and Ricker (1 975). How- 
ever, from a practical viewpoint they amount to the 
following: 

1) The population is closed, so the population size 
does not change over the period of the experiment. 

2) The probability of capturing a marked individual 
at any given time is equal to the proportion of 
marked members in the population at that time. 

3) Animals do not lose their marks over the period of 
the study. 

4) All marks are reported on recovery. 

For brevity, assumption (1) was stated strongly. His- 
torically, a number of alternatives have been proposed 

such that the population size may change over the 
period of the experiment: 

la) There is neither recruitment nor immigration but 
death and emigration affect marked and unmarked 
individuals equally. 

1b) There is recruitment and/or immigration but nei- 
ther death nor emigration. 

lc) Knowledge is available from other sources such 
that adjustments can be made for migration, re- 
cruitment, and death prior to analysis of the data. 

Under these assumptions, the probability that C, 
contains R, individuals given a particular population 
size (N,) can be described by either of three distribu- 
tions (hypergeometric, negative binomial, and bino- 
mial): 

The hypergeometric distribution (Eq. la) is appro- 
priate if the sample C, is taken without replacement 
(i.e., C, is taken and then searched for marks) while 
the binomial (Eq. lc) holds if the sample C, is taken 
with replacement (i.e., the animals are taken one at a 
time, examined for a mark, and then released). The 
negative binomial distribution (Eq. 1 b) is a special case 
appropriate for inverse sampling (i.e., the number of 
recaptures to be obtained is fixed in advance, and sam- 
pling is stopped as soon as that number is obtained). 
Note that a slight change in notation must be made 
since the sample size (C,) is the variable of interest. 

In general, we will assume that sampling is con- 
ducted with replacement (Eqs. 1b or 1c); however, since 
C, is usually small in relation to the total population, 
(Eq. lc) is usually a very good approximation to (Eq. 
la) regardless of the sampling procedure. 

According to the Bayesian view, all quantities are of 
two kinds: those known to the person making the in- 
ference and those unknown to the person. The uncer- 
tainty of the latter is described by a probability distri- 
bution. The fundamental reason for adopting the 
Bayesian position is that, once the basic step of de- 
scribing uncertainty through probability is admitted, 
we have a formal procedure for solving all inference 
problems. 

The only known information is the set of M,, C,, 
and R, obtained over T sampling intervals. The prob- 
ability of observing all the R,'s given some population 
level N, (assuming Eq. l a  or lc) is then: 
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since by assumption (2) each sample is independent of 
the other. Eq. 2 is termed the sampling distribution or 
likelihood of the data given N,. 

On the other hand, the distribution of the population 
size is unknown before the experiment is conducted. 
Mathematically, this is represented by a "noninfor-
mative" discrete uniform distribution, i.e., 

where K is the number of discrete population levels 
(N,, i = 1, 2, . . .K )  considered possible a priori. The 
only condition that needs to be imposed on Eq. 3 is: 

N, r Max M,, 

i.e., the smallest feasible population size must be equal 
to or greater than the number of animals marked. The 
upper bound (N,) of the feasible population size can 
be finitely large. Eq. 3 is termed the prior distribution. 

The sampling and prior distributions are combined 
to form the posterior distribution (probability of each 
N, given the data) by using Bayes' theorem. This theo- 
rem states that if B , ,  B,, . . . , and B,  constitute a set 
of mutally exclusive events of which one must occur 
and none has a zero probability, then for any event A 
for which P(A) # 0 

for r = 1, 2, . . . , K. For the event "population size is 
Ai,," Eqs. lc, 2, and 3 can be substituted into Bayes' 
theorem to give: 

If the negative binomial sampling distribution (Eq. 1 b) 
is assumed, the same result if obtained; however, the 
notation in the first two lines in Eq. 4 must be changed 
by replaciing the R's with C's. In other words, the above 

scheme is valid for either direct or inverse sampling. 
In fact, it does not matter how M, and Ct are obtained 
(e.g., fixed vs. random variables) within the conditions 
under which Eq. 1 was derived. 

Eq. 4 describes the uncertainty of the population size 
given the data. The distribution is defined completely 
by the numerator (the likelihood function), with the 
denominator serving merely as a normalizing constant 
to ensure that the distribution sums to one. In addition, 
the discrete uniform prior distribution only affects the 
magnitude of this normalizing constant. In other words, 
the posterior distribution will be proportional to the 
"true" distribution over the set (N,,  N,, . . . , N,) eval-
uated. 

The prior used in Eq. 4 is termed an improper prior 
because it is not defined over the entire parameter space 
feasible for N, (i.e., Mt 5 N, < m).The error between 
the actual posterior and the computed posterior is il- 
lustrated in Fig. l .  This error can be made arbitrarily 
small by increasing the range from N, to N,. It can be 
shown that the probability of the difference is at most 
3A/(1 - A), where A is the shaded area in Fig. 1 
(DeGroot 1970:20 1). 

PROPERTIESOF THE POSTERIOR 
DISTRIBUTION 

The posterior distribution can be calculated for all 
N given the data from a mark-recapture study. The 
properties of this distribution have been studied in- 
tensively in the Bayesian literature. Some of the prop- 
erties pertinent to the mark-recapture experiment are 
given below without proof (see DeGroot 1970, Chap- 
ters 10 and 1 1, for an axiomatic treatment). 

Inference 


Every decision problem concerning the population 
size and the data from a mark-recapture study requires 
only the posterior distribution as the contribution from 
the data. Thus, inference is available for any decision 
about the population size. For example, the probability 
that A' is smaller or larger than a specified value can 
be obtained directly by summation over the domain 
of interest. Notice that this is a direct probability state- 
ment about the population size (unlike the easily mis- 
understood statements provided by confidence inter- 
vals). Comparisons between populations can also be 
made directly (cf. Chapman 195 1, Chapman and Over- 
ton 1966, Skalski et al. 1983) by obtaining the com- 
pound distribution of the difference in population size, 
i.e., 

where C: is the difference between populations N, and 
N,. The smallest value that C: can obtain is 

and the largest 
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where K, and K, are the number of evaluations for 
populations 1 and 2, respectively. If the evaluation 
points of the two populations have equal increments, 
i.e., 

(K2 - 1)WI ti, - Nl 1) = (Kl - l)(N2.A2- hr2.1) 

then the compound posterior distribution, P(U,), can 
be computed by: 

where P I (* )  and P,(*) are the posterior probabilities 
(Eq. 4) for the two populations and 

L =  Max(; - K, + 1, 1) 

and 

H = Min ( j ,  K,). 

Finally, minimum population estimates and their 
associated precision are often of critical interest for rare 
species. Once the posterior distribution of population 
size has been determined, the probability that some 
population level Vlis less than the true population size 
can be simply constructed as the complement of the 
cumulative density, i.e., 

Convergence 

The posterior distribution of the population size tends 
to become more and more concentrated about the true 
population size with a normal distribution as T (num-
ber of sequential samples) or C,(sample size) increases. 
Therefore, all statistics formed from the posterior dis- 
tribution are consistent. 

The mean 

The mean is calculated as: 

, = I  

where P,(N,) = P(N, I R , ,  R2, . . . R,) is the posterior 
distribution. 

The mean itself is a random variable which is the 
expectation of the posterior and minimizes the mean 
square error. Since 

the expectation of the mean equals the expectation of 
the prior distribution to the extent that the computed 
and actual posterior are equivalent. 

The mode 

The mode of the posterior distribution is the max- 
imum likelihood estimate of the sampling distribution. 
It is equivalent to the iterative methods recommended 

by Schnabel (1938) and DeLury (1951) to obtain a 
maximum likelihood population estimate. 

The median 

The value f i i s  a median of the posterior distribution 
if P(N r &? r 0.5 and P(N 5 5 0.5. The median 
minimizes the absolute value of the error. 

Nuisance parameters 

While the focus of this paper is upon satisfaction of 
the four basic assumptions, additional parameters 
(termed nuisance parameters) can be incorporated into 
the sampling distribution to represent a failure of one 
or more of the basic assumptions. In theory, these pa- 
rameters could be integrated from the posterior dis- 
tribution (e.g., Carle and Strub 1978) or estimated from 
the available data. We suspect additional research will 
yield improved estimates of mortality, recruitment, and 
population size for experiments where individuals have 
heterogeneous capture probabilities. 

On the other hand, the suspected presence of nui- 
sance parameters may be ignored. If the nuisance pa- 
rameters do not markedly affect population size, then 
they can be treated as irrelevant. For example, a com- 
mon violation of assumption (1) is that the population 
size changes over the period of the study. It turns out 
that the probability P(N, 1 R , ,  R,, . . . ,R,) is insensitive 
to the change in the parameter of interest (i.e., popu- 
lation size) provided that the variance of the posterior 
distribution is large in comparison to the variance of 
the population size. Therefore, alternative assumptions 
( la)  and (lb) are only acceptable if the change in pop- 
ulation size is small in relation to the precision ob- 
tained from the study. Nevertheless, there may be some 
utility in proceeding with the analysis even with a sub- 
stantial change in population size, as point estimates 
of population level with some measure of precision 
would be applicable at some (usually unknown) period 
during the study (assumption l a  implies a monoton- 
ically decreasing population, while 1 b implies a mono- 
tonically increasing population). For example, if all 
marks were applied before any sampling for recaptures 
commenced (i.e., t = 0) then the computed posterior 
would be applicable at time t = 0. 

Much effort has traditionally been expended to find 
estimates that are approximately unbiased. If an esti- 
mator, N =Ax),  is unbiased, then 

where x i s  the data used in the estimator and N* is the 
true population size. The Bayesian points out that the 
summation occurs over data not observed in the sam- 
ple. Expressed in another fashion, the concept of an 
unbiased estimator demands 
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for all 12'. A series of values of N are taken one at a 
time, whereas the Bayesian implies that many values 
should be evaluated simultaneously, since the observed 
data could arise from a variety of "true" population 
levels, i.e., 

P(x) = 2 P(N, x )  = 2 P(xl WP(N) .  
L \ 

Setting f ( x )  = NP(N1x) we see, using the above, 

that 

and the posterior mean, f ( x ) ,  satisfies Eq. 7 if E [ I ~= 

A%*. 

The point of the above discussion is that the com- 

parison of point estimates between the two approaches 
cannot be done in the absence of a common base. For 
example, Chapman (195 1 )  demonstrates that Eq. 8 
holds for the Petersen experiment ( T  = 1 )  when 

for A' < M I  + C,.Since this is less than the maximum 
likelihood estimator and Eq. 4 will usually be skewed 
right (M,/A' < 0.5),the traditional estimate Eq. 9 and 
the point estimates derived from the Bayesian poste- 
rior recommended in this paper will usually be in the 
order: 

Traditional i Mode 5 Median Mean 

Since N >> M, + C , for small samples, the bias of the 
traditional estimate is of order -Nexp [ - E(R , ) I  (Seber 
1982),which can become large if E ( R , ) is small. 

Eq. 4 can be written as a sequential Bayes relation- 
ship, i.e., 

fort = 0, 1 ,2 , .  . . , T - 1 and 1 = 1, 2 ,  3 , .  . . , Kwhere 
P,(N,) = 1/K and P,(N,)= P(N,IR,,  R,, R,, . . . , R,). 

This recursive relationship leads to the following 
simple algorithm for computation of the posterior dis- 
tribution: 

1 )  Set the lower and upper bounds and the number 
of points to be evaluated ( N , ,  N,, K). 


2) Let N = { N ,+ ( i  - 1)(N, - N,) / (K- 1 ) ) .  

3) Let P =  1 .  

4) Let t = 0.  

5) L e t t = t +  1. 

6 )  Let P = {(M,/N/JRf1 - M,/'A',)C1-R~P,}. 


7) Let a = SUM (P). 

8)  Let P = P/a. 

9)  Plot P vs. N. 


10) If t < Tgo  to step 5. 

1 1 )  Calculate statistics of interest from P and N. 


where, 

N = {N , ,i = 1 ,  2 ,  3, . .., K\ = population size; 
P = {P,,i = 1, 2, 3, . . . , K )  = posterior distribu- 

tion; 
M = {M, , t = 1, 2, 3, . . . , TI = number of marks; 
C = {C,,t = 1, 2, 3, . . . , T} = sample size; and 
R = {R , , t = 1, 2, 3, . . . , T }= number of recap- 

tured marks. 
It is assumed that the data from the mark-recapture 

experiment have been read into vectors M, C, and R 
(all dimensioned T). Two additional vectors are re- 
quired (dimensioned K) for the population sizes to be 
evaluated (N) and the posterior distribution (P).Steps 
( 1 )  to (4) in the algorithm set the population vector to 
K equally spaced values for evaluation, initialize the 
posterior distribution, and set the sequential loop 
counter to 0.  The recursive loop begins at step (5)by 
incrementing the counter. Next, the numerator of Eq. 
10 is calculated. Note that the binomial factor can be 
written more concisely as ( N ,- but this M,)C~-R~/N,Cr, 
formulation may lead to machine overflow. Steps (7)  
and (8)normalize the posterior distribution for plotting 
in step (9). After the final sequence any statistics or 
inferences of interest can be calculated. 

This algorithm is appropriate for the binomial and 
negative binomial sampling distributions. The hyper- 
geometric sampling distribution ( l a ) can be included 
by simply replacing step (6)with: 

Let P = { f ;P,}  ( 6 4  

where 

The plot of the posterior distribution at each itera- 
tion can be used as a visual diagnostic. The distribution 
should tend to stabilize or mass about a single value. 
Thus, a continuous trend towards a larger or smaller 
population size is strong evidence that assumption 1 
has been violated, i.e., an increase or decrease of the 
population over the period of the study. The change 
in the distribution from one sequence to the next is a 
measure of the information added by the sample. In 
addition, a relative measure of the effect of the prior 
on the posterior distribution is the distance from the 
axis at N ,  and N,. 
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TABLE1 .  Simulated example of a study of a population of 
10 000 animals in perfect compliance with the four basic 
assumptions. In t = 0 , 5 0  animals were marked and returned 
to the population. 

A. The generated data. 

Marked 
Sampling No. animals animals at Recaptures
interval sampled in large at start in sample 

(0 interval (C,) of interval (M,) C, (R,)  

34 5 0 0 
42 8 4 1 
43 125 0 
40 168 1 
3 2 
56 
42 
44 
5 6 
44 

B. Population estimates using traditional methods. 

Esti-
mated 

Estimation method N 95% Range 

Orignal Schnabel ( 1  938) 8688 5256-25035 
Modified Schnabel (Chapman 1954) 80 19 4964-1 6 8 14 
Schumacher and Eschmeyer (1943) 8498 5596-17 652 
Delury ( 1  95 1 )  weighting formulae 868 1 

C. 	Bayesian estimates. 
Parameters Value 

Mean 10 355 
Median 9700-9750 
Mode 8650-8750 
2.5 and 97.5% quantiles 	 5650-18600 
95% Highest Probability Density 

(HPD) 5000-17 100 

The number of evaluations ( K )  should reflect the 
number of significant digits desired for reporting pur- 
poses. For example, quantiles (e.g., median) can be 
reported to the nearest interval between points, while 
the mode can only be reported to be in the region of 
two intervals (an exception is when every integer be- 
tween the bounds is evaluated). The resolution of the 
mean will be approximately I/<K, where I is the in- 
terval between points. Since these rules are conserva- 
tive and approximation through linear interpolation 
improves as K increases, the use of very large K is 
unwarranted. Therefore, we recommend 100 < K < 
1000. 

We also recommend that an interactive computer 
environment be used for analysis, since a suitable range 
of the prior can be found quickly by trial and error. 
As long as the posterior probability at N, and N, re-
mains small, there will be negligible difference between 
posteriors computed with alternative priors (see Fig. 
1). A convenient strategy is to locate an appropriate 
range of the prior using few evaluations (e.g., K = 100) 
and then increase Kover the established range to obtain 
the desired number of significant digits. 

A standardized probability region (analogous to a 

confidence interval), i.e., P (a -iN _i b) = 1 - a,  where 
a and b are bounds and 1 - a a fixed probability, can 
be defined in two possible ways. First, the appropriate 
quantiles can be reported, i.e., the a and b such that 

a a
P(N < a)  = - and P(N > b) = -, or second, the highest 

2 2 
probability density (HPD), i.e., the a and b such that 
b - a is minimal and P(a 5 N 5 b) = 1 - a. The 
methods produce identical results when the distribu- 
tion is symmetrical. 

EXAMPLES 

A simulated example 

A sequential mark-recapture experiment was sim- 
ulated to comply exactly with the four basic assump- 
tions (Table 1A). In 10 subsequent random samples 
the recaptures were computed as a binomial deviate 
of the proportion of marked animals (i.e., Eq. lc). Ap- 
proximately 5% of the population was sampled. Table 
1 shows the population estimates derived from tradi- 
tional and Bayesian methodologies. 

The posterior distribution was computed with 501 
evaluations between the bounds of 3000 and 28 000, 
i.e., an interval size of 50. The successive distributions 
are plotted in Fig. 2 over the range of the prior. Note 
that the last few iterations can be recognized by their 
increased concentration about the true population level 
of 10 000, and the final posterior (heavy line) cannot 
be distinguished from the axis at the tails since the 
probabilities at the tails were on the order of 

This example, where sample size with respect to the 
population level is relatively small, was generated to 
illustrate three points. First, there can be substantial 
differences between the traditional point estimates and 
those derived from the Bayesian approach ('=20°/0 for 
this example), although as the sample size increases 
the difference will become minimal. Second, the pos- 
terior distribution resembles a Poisson distribution if 

POPULATION SiZE (N) 

FIG. 1 .  Effect of the improper prior on the posterior dis- 
tribution [P*(NI R)  = actual posterior, P(N I R )  = computed 
posterior. P(M = prior]. 
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ESTIMATED POPULATION SIZE 

FIG.2. Sequential posteriors for a simulated example in which the true population size is 10 000 (K,[smallest population 
size considered] = 3000, NK = 28 000; K [number of discrete population levels] = 501). 

sample size is small (compare the Bayes HPD region 
with the modified Schnabel confidence region, which 
assumes a Poisson distribution for total recoveries). 
Finally, the binomial simulation of recoveries does in- 
duce shifts in the sequential posterior; therefore, some 
caution must be used when it is applied as a diagnostic 
for a closed population. 

The best evidence for a closed population is usually 
biological rather than statistical. However, for large 
sample sizes the ability to detect real change in the 
population is enhanced. For example, Fig. 3A displays 
the sequential posteriors from an initial population of 
1000 with 200 marks applied. In 10 subsequent fixed 
samples (C, = 50), the recaptures were computed as a 
binomial deviate of the proportion of marked animals 
in a population expanding (i.e., immigration or re- 
cruitment) at the rate of 5% per period. It was again 
assumed that the entire sample was marked and re- 
turned to the population. Similarly, Fig. 3B displays a 
scenario for a decrease (i.e., mortality or emigration) 
of 5% for both the marked and unmarked population 
using the same initial conditions. Note that sensitivity 
of the posterior is greater for an increasing population 
than a decreasing population since only the unmarked 
population is affected in the former. 

Illinois mud turtle 

Table 2 displays the mark-recapture data and Bayes- 
ian population estimates that motivated this paper for 
the Illinois Mud Turtle at the Big Sand Mound. Com- 
pliance with the basic assumptions for a mark-recap- 
ture experiment was believed to be excellent. Never- 
theless, because of extremely small sample sizes and 

the sparsity of recaptures, the standard methods are 
not applicable (Otis et al. 1978). Blind application of 
those methods leads to strong negative bias and cal- 
culated standard errors in excess of the associated sta- 
tistics. For example, the lower bound of the traditional 
confidence interval (88-94 1 1 turtles) was rounded up- 
ward to the number of animals actually marked. On 
the other hand, the application of the sequential Bayes 
algorithm is straightforward and gives reasonable re- 
sults (Fig. 4 and Table 2B display the 39 iterations.) 

Fig. 5 presents minimum population estimates and 
their associated precision (i.e., Eq. 6), which, for rare 
species, is of critical interest. For example, from the 
curve we can determine that there is a 0.95 probability 
that the abundance of turtles was at least 640. 

Nuttall's cottontail 

Skalslu et al. (1 983) presented a methodology for 
computing confidence interval estimators of propor- 
tional abundance of two populations. To illustrate their 
computations they used a comparative census of a pop- 
ulation of Nuttall's cottontail (Sylvzlagus nuttallii) con- 
ducted during 1974 and 1975. In August of each year 
cottontails were live-trapped, marked with picric acid 
(which stains the fur yellow), and released. In the fol- 
lowing month a drive census was conducted in which 
the possibility for multiple sightings of animals existed. 
While the authors acknowledge that the possibility of 
multiple sightings invalidates their procedure, this cen- 
sus procedure makes the use of the binomial sampling 
distribution formally correct. In I 974, 87 animals were 
marked (hf)and 14 animals were sighted during the 
subsequent drive (C), of which 7 were marked (R). In 
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FIG. 3. Simulated sequential posterior distributions for: 
(A) an increasing population (N, = 800, N, = 1600, K = 80 1) 
and (B) a decreasing population (N, = 500, NK = 1100, K = 

601). Symbolism as in Fig. 2. The order of sampling sequences 
is indicated. 

1975, the comparable census produced the following 
results: M = 101, C = 27, and R = 17. Fig. 6 displays 
the computed posterior distributions for each year. 

The distribution for the ratio of 1974 abundance to 
1975 abundance (Skalski's K,) is displayed in Fig. 7A. 
The distribution was computed by summing the joint 
probability of the two years for all combinations of 
population levels evaluated into discrete ratio intervals 
0.005 apart. 

Fig. 7 A  demonstrates that the distribution of the 
ratio is not smooth. Moreover, the probability values 
are not exact. For example, the probability that the 
population increased in 1975 is 0.29 (shaded area in 
Fig. 8A); this is only accurate to the extent that a ratio 
of 0.9975 to 1.0025 is acceptably close to 1. 

A better method to examine the change in popula- 
tion level is simply to compute the compound distri- 
bution of the difference between 1974 and 1975 (i.e., 
Eq. 5). Fig. 7B displays this distribution. It is important 
to note that since the same basis (i.e., identical prior 
distributions) was used to form the posteriors, the com- 

pound distribution is exactly the probability of differ- 
ences between the two years given the data. The prob- 
ability that the population increased in 1975 (given the 
data) is again 0.29. 

If it is judged that there has not been a substantial 
change in the population level in the two years, an 
appropriate procedure for describing the uncertainty 
of the population level after the 1975 census is to use 
the 1974 census as prior knowledge and update it with 
the 1975 census (Fig. 6). 

TABLE2. Illinois mud turtle example (J. Bickham and B. J. 
Gallaway, personal communication). 

A. Field data. 

Marked 
animals at 

Sampling No. animals large at start Recaptures 
occasion sampled in of interval in sample C, 

(0 interval (C,) (Mt) (RI) 

B. Bayesian estimates 
Parameters Value 

Mean 1574 
Median 1300-1310 
Mode 960-980 
2.5 and 97.5% quantile 560-4210 
95% Highest Probability Density (HPD) 410-3470 
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FIG.4. Sequential posterior distributions for the Illinois mud turtle at Big Sand Mound (N, = 200, N, = 8200, K = 801). 
Symbolism as in Fig. 2. There were 39 iterations of the Bayesian algorithm. 

DISCUSSION 

In this paper we have noted that, for mark-recapture 
experiments with relatively small sample sizes, there 
will be differences in point estimates obtained from 
Bayesian vs. traditional methods. These differences re- 
flect the degree to which there is a lack of unity at the 
very foundation of statistics. A large body of literature 
comparing sampling theory and Bayesian theories of 
inference and decision is available. Comparative dis- 
cussions of the two approaches (as well as other schools 
of inference) can be found, for example, in Kempthorne 
and Folks (1 97 l), Barnett (1 973), and Cox and Hinkley 
(1974). 

From a practical viewpoint, the approach advocated 
in this paper has many attractive features. First, the 
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population distribution is obtained directly by calcu- 
lating the probability of observing the data at all fea- 
sible population sizes. Further, the sequential Bayes 
algorithm has an exact correspondence to the physical 
sequence of marking and recapturing animals. While 
this "blunt nose" approach is intensive in computa- 
tion, widely available computing power (e.g., micro- 
computers) makes the computational algorithm both 
tractable and convenient. Second, the method works 
for all cases regardless of the sample size, number of 
sequences, sampling procedures, or whether some 
quantities are regarded as fixed or random (e.g., num- 
ber of marks applied). In other words, the user may 
focus only upon the validity of the basic assumptions 

0 2 0  

Posterior 1975 

.-

110 170 2 3 0  2 9 0  3 5 0  410 
---LA 


0 2 0 0  400 600 8 0 0  1000 ESTIMATED POPULATION SIZE 
MINIMUM POPULATION SlZE 

FIG.6. Posterior distributions for Nuttall's cottontail dur- 
FIG.5. Minimum population size ofthe Illinoismud turtle ing 1974, 1975, and after 1975 (combined data from 1974 

at Big Sand Mound. and 1975). 

8 
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CHANGE IN POPULATION SIZE 

FIG.7.  Compound probability distribution of the change 
in population of cottontails between 1974 and 1975. (A) As 
a ratio (1974/1975). (B) as a simple difference. 

used to generate the sampling distribution (Eq. 1)with-
out concern for other approximations. Third, the plot 
of the posterior distribution at each iteration can be 
used as a visual diagnostic of closure, the information 
added by each sampling sequence, and the effect of the 
prior distribution. Finally, the end product completely 
describes the uncertainty of the population size given 
the data. This becomes important when inferences are 
to be made about the population size. For example, 
the statement that the difference in the number of an- 
imals found in two populations is statistically signifi- 
cant is biologically vacuous, since the ecologist knows 
a priori that any populations separated by space or 
time are different. Statistical significance is only a com- 
ment on the level of precision that the experiment was 
able to generate. Ultimately, the ecologist requires the 
compound distribution of the difference between the 
two populations (i.e., how different are they and what 
is the uncertainty associated with those differences). 
Once the terminal sequential posterior distributions 
have been calculated, the compound distribution can 
easily be obtained. 

In conclusion, the Bayesian framework offers a co- 
herent method for obtaining information about a pop- 

ulation from any mark-recapture experiment. Indeed, 
the method is even applicable to experiments in which 
very sparse data are obtained, as was the case in the 
mud turtle study. Such data cannot be sensibly ana- 
lyzed using more traditional approaches. Given that 
the sequential Bayes algorithm can deal with small 
sample sizes, it should prove quite useful in the initial 
estimation and monitoring of the population trends of 
rare species. 

We thank Benny Gallaway for his resolute support and 
enthusiasm, and Carl Walters, who read earlier versions of 
this paper. Financial support was provided by Monsanto Ag- 
ricultural Products Company. 
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