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Abstract: Estimating population size of elusive and rare species is challenging. The difficulties in catching
such species has triggered the use of samples collected noninvasively, such as feces or hair, from which genetic
analysis yields data similar to capture-mark-recapture (CMR) data. There are, however, two differences between
classical CMR and noninvasive CMR. First, capture and recapture data are gathered over multiple sampling
sessions in classical CMR, whereas in noninvasive CMR they can be obtained from a single sampling session.
Second, because of genotyping errors and unlike classical CMR, there is no simple relationship between (genetic)
marks and individuals in noninvasive CMR. We evaluated, through simulations, the reliability of population
size estimates based on noninvasive CMR. For equal sampling efforts, we compared estimates of population
size N obtained from accumulation curves, a maximum likelihood, and a Bayesian estimator. For a closed
population and without sampling heterogeneity, estimates obtained from noninvasive CMR were as reliable as
estimates from classical CMR. The sampling structure (single or multiple session) did not alter the results, the
Bayesian estimator in the case of a single sampling session presented the best compromise between low mean
squared error and a 95% confidence interval encompassing the parametric value of N in most simulations.
Finally, when suitable field and lab protocols were used, genotyping errors did not substantially bias population
size estimates (bias < 3.5% in all simulations). The ability to reliably estimate population size from noninvasive
samples taken during a single session offers a new and useful technique for the management and conservation
of elusive and rare species.
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Estimación del Tamaño Poblacional con Datos de Captura-Marca-Recaptura No Invasivos

Resumen: La estimación del tamaño poblacional de especies elusivas y raras es un reto, Las dificultades para
capturar a esas especies ha llevado al uso de la recolección de muestras no invasivas como heces o pelo, cuyos
análisis genéticos proporcionan datos similares a los de captura-marca-recaptura (CMR). Sin embargo, hay dos
diferencias entre CMR clásica y CMR no invasiva. Primero, los datos de captura y recaptura son recolectados
en sesiones múltiples de muestreo en CMR clásico, mientras que en CMR no invasivo se pueden obtener en una
sola sesión de muestreo. Segundo, debido a errores en la determinación del genotipo y a diferencia de CMR
clásico, no hay una relación simple entre marcas (genéticas) e individuos en CMR no invasiva. Por medio
de simulaciones evaluamos la confiabilidad de las estimaciones de tamaño poblacional basadas en CMR
no invasiva. Para esfuerzos de muestreo comparamos estimaciones del tamaño poblacional N obtenidas de
curvas de acumulación, una probabilidad máxima y un estimador Bayesiano. Para una población cerrada y
sin heterogeneidad de muestreo, las estimaciones obtenidas de CMR no invasivo eran tan confiables como las
estimaciones de CMR clásico. La estructura del muestreo (sesión única o múltiple) no alteró los resultados, en
el caso de una sola sesión de muestreo el estimador Bayesiano presentó el mejor arreglo entre el menor error
promedio y un intervalo de 95% de confianza en el valor paramétrico de N en la mayoŕıa de las simulaciones.
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Finalmente, cuando se utilizaron protocolos de campo y laboratorio adecuados, los errores en la determinación
de genotipos no sesgaron sustancialmente a las estimaciones de tamaño poblacional (sesgo < 3.5% en todas
las simulaciones). La habilidad para estimar el tamaño poblacional confiablemente a partir de muestras no
invasivas recolectadas en una sola sesión ofrece una técnica nueva y útil para la gestión y conservación de
especies elusivas y raras.

Palabras Clave: CMR, estimador Bayesiano, marcador genético, muestreo no invasivo, tamaño poblacional

Introduction

Capture-mark-recapture (CMR) experiments were devel-
oped to tackle the difficulties associated with the esti-
mation of population size in mobile animals. The general
principle of CMR experiments is to mark individuals in
a first capture session and then to record the proportion
of marked individuals in subsequent recapture sessions
(Williams et al. 2001). In the simplest model, popula-
tion size N is then estimated from the ratio of marked
to unmarked individuals in recapture sessions (e.g., Se-
ber 1973), assuming that all individuals (marked and un-
marked) randomly mixed after the first capture event and
are thus all equally catchable during the recapture ses-
sions. This simple principle has led to the statistical de-
velopment of a variety of estimators of the population size
N (e.g., Darroch 1958; Seber 1973; Otis et al. 1978; Gazey
& Staley 1986). However, it remains extremely difficult to
obtain reliable estimates of population size in species that
are difficult to catch, such as elusive or rare species, or to
handle.

The need for abundance estimates in management pro-
grams of species with overall low catchability has trig-
gered the use of molecular tags (Palsbøll et al. 1997; Kohn
et al. 1999). Multilocus genotypes obtained, for instance,
from microsatellites, can be used to discriminate samples
on the basis of their allelic composition (Palsbøll 1999;
Taberlet & Luikart 1999). When samples consist of nonin-
vasively collected hairs or feces, molecular tags obtained
without handling an animal can be used to study individ-
ual home ranges (Taberlet et al. 1997), dispersal (Gerloff
et al. 1999; Lucchini et al. 2002), or paternities (Gerloff et
al. 1999; Constable et al. 2001), or to estimate population
size (e.g., Kohn et al. 1999; Mowat & Paetkau 2002; Eggert
et al. 2003; Bellemain et al. 2005). Estimates of population
size based on genetic tags can be derived following the
principle described above, as long as samples are taken in
a multisession sampling experiment that mimics the cap-
ture and recapture sessions of CMR experiments (Palsbøll
et al. 1997; Bellemain et al. 2005; Prugh et al. 2005). But
genetic tags also allow estimating population sizes from
single sampling sessions. In a set of n noninvasive samples
collected in a single session, a subsample of m different
samples yields m−1 “recaptures” if they bear the same
genetic tag (and thus, presumably come from a single in-
dividual). Classical CMR estimators of population size rely

on multisession sampling and therefore cannot be used
to estimate N from single-session sampling. Rather, when
samples come from a single session, molecular ecologists
have simply estimated N from the asymptote of accumu-
lation curves, which are plots of the number of unique
molecular tags against the number of analyzed samples
(Kohn et al. 1999; Eggert et al. 2003), a problem similar
to the estimation of species diversity in an area (Colwell
& Coddington 1994).

The potential for estimating population size from
single-session sampling experiments is encouraging, es-
pecially in species for which field work is expensive or
time consuming. However, it remains to be shown that
single-session sampling is as reliable as multisession sam-
pling to estimate N. Classical CMR estimates of population
size rely on explicit modeling of the capture–recapture
process (Otis et al. 1978). This approach presents the
great advantage that it can take into account various
sources of capture heterogeneity (i.e., when all stage/age
classes do not have the same capture probability or when
capture probability is not constant over time). In contrast,
accumulation-curve estimates of N simply rely on fitting
capture data to the equation of an asymptotic curve, with-
out explicit reference to the capture–recapture process.
It is thus impossible to explicitly take capture heterogene-
ity into account with accumulation-curve methods. The
single parameter with biological relevance in these equa-
tions is the value of the asymptote, which is assumed
to be an estimate of N (Kohn et al. 1999; Eggert et al.
2003). However, Eggert et al. (2003) show that all equa-
tions are not equal, with the equation proposed by Kohn
et al. (1999) being strongly biased upward (equations in
Methods).

Working with molecular tags adds another type of prob-
lem, namely that, unlike physical marks, multilocus geno-
types cannot always be assigned to a unique individual
with 100% confidence. First, two different individuals can
share the same tag. This kind of error, called the “shadow
effect” (Mills et al. 2000), is likely when populations con-
sist of highly related individuals and/or when the loci cho-
sen to build the molecular tags lack variability. There is
thus some risk of considering samples that originate from
different individuals as identical. This leads to underesti-
mates of population size (Mills et al. 2000). Second, DNA
extracted from noninvasively collected samples is partic-
ularly prone to genotyping errors (Taberlet et al. 1999).
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These typically lead to overestimates of population size
(Waits & Leberg 2000) because incorrect genotypes are
wrongly recognized as genuine individuals. Genotyping
error rates can, however, be considerably lowered when
following suitable protocols at field, laboratory, or analy-
sis level (see Paetkau 2003 for a review in the context of
population size estimation).

Our primary aim in this simulation study was to inves-
tigate the reliability of population size estimates based on
single-session sampling of noninvasively collected sam-
ples. To achieve this, we compared population size esti-
mation methods based on single-session and multisession
sampling schemes. We were particularly interested in test-
ing whether single-session sampling leads to estimates
that are as reliable as multisession sampling for similar
sampling effort. We extended our comparison to a num-
ber of methods that were not yet used to estimate popula-
tion sizes from molecular tags. In particular, we evaluated
a Bayesian estimator of N (Gazey & Staley 1986) that is
usable for data obtained from single-session sampling be-
cause it explicitly models the capture-recapture process.
Finally, we quantified the bias introduced with the use of
molecular tags (i.e., taking into account the correction
of genotyping errors as performed in realistic laboratory
conditions).

Methods

Simulations

Simulations were performed using GEMINI 1.4.1, a soft-
ware designed to simulate all steps of a noninvasive ge-
netic survey with multilocus genotypes to identify indi-
viduals (Valière et al. 2002). There are four simulation
steps in the program. First, a population is built in which
all individuals have genotypes determined using specified
allele frequencies. Allele frequencies were from one pop-
ulation of noctule bats (Nyctalus noctula) (Petit & Mayer

Table 1. Characteristics of the set of loci used for simulating noninvasive surveys of population size (data from Petit & Mayer 1999).

Statistica

Locus Na Na < 0.05 Ho He PIunb PIsib

P2 8 5 0.58 0.74 7.77 × 10−2 4.03 × 10−1

P8 8 4 0.75 0.76 6.32 × 10−2 3.92 × 10−1

P13 12 8 0.88 0.89 1.07 × 10−2 3.13 × 10−1

P18 5 4 0.42 0.65 1.30 × 10−1 4.67 × 10−1

P20 19 13 0.92 0.93 1.59 × 10−3 2.88 × 10−1

P217 11 8 0.79 0.88 1.12 × 10−2 3.14 × 10−1

P219 5 4 0.54 0.69 1.28 × 10−1 4.44 × 10−1

P223 10 8 0.75 0.83 2.81 × 10−2 3.48 × 10−1

Mean 9.75 6.75 0.7 0.8 4.38 × 10−13b 3.23 × 10−4b

aStatistics: Na, number of allele; Na < 0.05, number of alleles with frequency <0.05; Ho, observed heterozygosity; He, expected heterozygosity;
PIunb, unbiased probability of identity; PIsibs, probability of identity for sibs.
bProduct of all single loci values.

1999). This population was chosen because it has the
lowest probability of identity (i.e., the lowest probability
that two distinct individuals share an identical multilocus
genotype; Waits et al. 2001) among the 13 studied popu-
lations of noctule bats. The data set is composed of eight
loci (alleles, heterozygosity, and probability of identity in
Table 1). Probability of identity is low enough (4.38 ×
10−13 for the unbiased probability of identity and 3.23 ×
10−4 for the probability of identity of siblings; see Waits
et al. 2001) to correctly discriminate individuals so that
the shadow effect should not be a serious problem. The
size of the simulated populations was set to 100, but ad-
ditional simulations were run with populations of 1000
individuals and yielded similar results (see also Waits &
Leberg 2000).

Second, a given number of samples (n) were taken
in this population over a given number of sampling ses-
sions. Random sampling from the population was per-
formed with replacement to simulate noninvasive sam-
pling, with n = 50, 100, 150, and 300 samples to test sev-
eral sampling-effort scenarios. Five sampling occasions
were performed for multiple-session methods. Sample
sizes were kept constant when comparing single- and
multiple-estimation-session methods (see below). For in-
stance, for a sample size of 50, there were either 50 sam-
ples from a single sampling session or 10 samples from
each of 5 sessions. All individuals had the same probability
of being sampled (no capture heterogeneity).

Third, all samples were genotyped, which means geno-
types were modified given error rates. Genotyping errors
can be of two main kinds (Taberlet et al. 1996). Stochas-
tic sampling of alleles in a diluted DNA extract can lead
to the amplification of only one allele in heterozygotes.
This is called allelic dropout (ADO). False alleles (FA) is
a second type of error that arises when alleles are am-
plified in addition to or instead of the true alleles (for
instance due to slippage of the polymerase during PCR).
Error rates (ADO/FA) were set to 0.3/0.1 for each locus.
These are realistic rates derived from several noninvasive
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studies (e.g., Gagneux et al. 1997; Lathuillière et al. 2001;
Lucchini et al. 2002).

Fourth, for each sample, a consensus genotype was
built according to a given consensus genotype rule. Fol-
lowing Taberlet et al. (1996), eight PCR amplifications per
locus and sample were simulated and consensus geno-
types were constructed using the threshold method im-
plemented in GEMINI. Alleles were saved in the consen-
sus genotypes if they appeared at least three times among
the eight amplifications because the probability of observ-
ing a particular false allele is low (around 5%; Taberlet et
al. 1996). These rules theoretically reduce genotyping er-
rors due to allelic dropout and false allele to low rates
(Taberlet et al. 1996). Errors that remain after multiple
amplifications and the application of the consensus rule
are called residual errors.

We built two data files from the simulations. The first
one contained the identities of individual samples ob-
tained after sampling the population and was constructed
from step 2 of the simulation process (this is the file called
SPL in GEMINI). The second file contained consensus
genotypes and was constructed after step 4 of the simu-
lation process (this is the file called CONS in GEMINI).
The difference between the two types of data files is thus
simply the possibility given by the genotyping process
to introduce residual errors in sample identities. This al-
lowed us to evaluate the bias introduced by these residual
errors in the population size estimate.

The main assumptions of the simulations were a sta-
tionary (i.e., no birth nor death) and closed (i.e., no mi-
gration) population, so population size did not change
over the study period; an equal capture probability for all
individuals; and a recapture probability that was identical
to the capture probability and that did not vary during
the study. We ran simulations under different degrees of
capture effort and replicated each condition 200 times.

Population Size Estimation

We compared six methods of population size estimation
that all use information on recapture of marked animals.
Population sizes were estimated with a maximum-likeli-
hood method (MLM), three different equations of accu-
mulation-curve methods (ACM), and two versions of a
Bayesian method (BM). All methods were originally indi-
vidual-based methods, but in our study we used the geno-
type-based approach (e.g., Schwartz et al. 1998), in which
unique and identical genotypes detected during a sam-
pling occasion are pooled and considered a single individ-
ual. We then used unique genotypes as individual marks
in the mathematical models to estimate population size.

MAXIMUM-LIKELIHOOD METHOD (MLM)

Otis et al. (1978) proposed various maximum-likelihood
models to estimate population sizes with capture-mark-

recapture data. These models differ in their underlying
assumptions. The simplest one, M0, is a model for a closed
population and without any sampling heterogeneity. We
used M0 because it fits the hypotheses of our simulations.
We used CAPTURE (Otis et al. 1978) to estimate popula-
tion size from data from the five sampling sessions. In
such a case, the maximum-likelihood estimator N̂ of N
satisfies:

ln L (N̂ |X ) = max
Ni∈{M,M+1,M+2,...}

[
ln

Ni !

(Ni − M)!
+ n ln n

+ (5Ni − n) ln(5Ni − n) − 5Ni ln 5Ni

]
,

where X is for the data, M is the total number of distinct
individuals caught (here, genotypes sampled) during the
experiment, and n is the total number of captures (or sam-
ples taken) during the study (see pp. 14–16 and Appendix
B in Otis et al. [1978]).

ACCUMULATION (OR RAREFACTION) CURVE METHODS (ACM)

Accumulation-curve methods were originally used for the
estimation of species diversity in an area (Colwell & Cod-
dington 1994). The estimation of the number of individ-
uals of a population is similar to this problem, so an ACM
approach could also be used for the estimation of the num-
ber of individuals in an area (Kohn et al. 1999). The prin-
ciple of the ACM approach is to fit the cumulative num-
ber of different species/individuals/genotypes to the num-
ber of newly discovered species/individuals/genotypes.
The asymptote of the curve is an estimation of the to-
tal number of entities present in the area. Accumulation
data can be fitted to various equations, of which three
have been used by molecular ecologists. We evaluated
the three equations here.

Kohn et al. (1999) proposed to use the equation y =
ax

b+x (where y is the number of unique genotypes, x is
the number of samples analyzed, a is the value of the
asymptotic number of unique genotypes, and b, which
has no obvious biological interpretation, is related to the
rate of decrease of the slope of the asymptote) to esti-
mate the number of coyotes (Canis latrans) in the Santa
Monica Mountains (California, U.S.A.). Eggert et al. (2003)
used a second equation to estimate population size of
forest elephant (Loxodonta cyclotis): y = a (1 − e−bx).
A third equation was proposed from the classical occu-
pancy problem (D. Chessel, personal communication)
and has been applied to the estimation of population size
in the Eurasian badger (Meles meles, Frantz et al. 2004).
This equation represents the expectation of the number
of full boxes (unique genotypes, y) when balls (samples,
x) are randomly distributed into boxes (individuals, a):
y = a − a (1 − 1

a)x.
We applied these three approaches by pooling the data

from the five sampling sessions into a single session. We
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used script files provided by GEMINI and a nonlinear
model available in the nls function of R software (Ihaka
& Gentleman 1996) to fit data to each equation. Because
the order in which samples are analyzed has an influ-
ence on the estimation of the population size (Kohn et
al. 1999), samples were randomly permuted 50 times for
each replicate. We then calculated estimates of popula-
tion size as the mean of the asymptotes over the 50 curves.
This permutation procedure also provided approximate
confidence intervals estimated from the standard devia-
tion over the 50 curves (Kohn et al. 1999; Eggert et al.
2003).

BAYESIAN METHODS (BM)

We used the sequential Bayesian method proposed by
Gazey and Staley (1986) to estimate N based on a nonin-
formative prior distribution (all possible population sizes
have the same probability to be the true one) and on
three attributes obtained from the capture–recapture his-
tory of each individual (i.e., the number of marked indi-
viduals at the start of each sampling occasion, the total
number of individuals sampled during each sampling oc-
casion, and the number of recaptures appearing during
each sampling occasion). This method was originally de-
signed for multisession sampling (later on referred to as
BM-multiple) but can readily be adapted to single-session
sampling if one considers each capture a sampling session
(later on referred to as BM-single). For this Bayesian algo-
rithm, the order in which the samples are analyzed does
not influence the population size estimation because the
method is an iterative process that always gives the same
final posterior distribution. As a Bayesian point estimator
N̂ of N, we used the mode of the posterior distribution
of N, which satisfies:

Pr(N̂ |X ) = max
Ni∈{M,M+1,M+2,...}

T∏
t=1

(
M

Ni

)rt
(

1 − M

N i

)nt−rt

,

where X is for the data, M is the total number of distinct
individuals caught (here, genotypes sampled) during the
experiment, nt is the number of individuals caught (sam-
ples taken) during capture (sampling) session t, rt is the
number of recaptures during capture (sampling) session t,
and T is the total number of capture (sampling) sessions
(Gazey & Staley 1986). This estimation method can be
implemented as a sequential Bayesian algorithm, the se-
quence being implemented over the T capture sessions.
In this algorithm, the uniform prior distribution is thus
only used to compute the posterior distribution for t = 1.
From t = 2 onward, each estimation step uses as a prior
distribution for N the posterior distribution computed at
the previous step, until t reaches T. An estimate for N is
obtained from the mode of the posterior distribution at
t = T (for more details about the algorithm, see Gazey
& Staley 1986). This procedure uses some information

(the number of recaptures) not used in model M0, so the
Bayesian and the maximum-likelihood estimates are likely
to differ.

The Bayesian method needs three initial parameters to
estimate population size: the minimal and maximal pop-
ulation sizes tested and the incremental interval between
two tested sizes. These parameters were set for each con-
dition: the minimal population size Nmin was set as the
number of unique genotypes detected in the complete
sample; the maximal population size Nmax was set high
enough to include the highest probability density inter-
val (Gazey & Staley 1986); the incremental parameter Nk

was set so that all integer population sizes between and
including Nmin and Nmax were tested. The method was
implemented in the R software and script files were pro-
vided by GEMINI.

Statistical Comparison of Estimates

For each of the four sampling-effort conditions, we ob-
tained six different estimates from the six methods. Ad-
ditionally, estimates were produced based on data from
either sample identities or consensus genotypes. Sample
identities allowed comparisons of the six different meth-
ods irrespective of problems linked to the use of genetic
techniques. We used consensus genotypes to investigate
how laboratory procedures, and in particular problems
inherent to the genetic analysis of noninvasive samples,
can interfere with population size estimation. Our aim
here was not to quantify the bias introduced by different
types of genotyping errors but rather to check whether
residual errors in genotypes substantially bias population
size estimates.

In each simulation case, we calculated the mean squa-
red error (MSE, also called quadratic mean error), which
is equal to the squared bias plus the variance. A low MSE
is characteristic of a good trade-off between low bias and
low variance, and we considered a method “better” than
the others if it had a low MSE. For two methods with
similar MSE, the trade-off between bias and variance was
considered.

We also assessed the precision of the estimation us-
ing 95% confidence intervals (95% CI). In particular, we
evaluated the percentage of simulations in which 95% CI
included the true value of N. For MLM, confidence in-
tervals corresponded to the approximate 95% CI given
in the output file (see Otis et al. 1978, p. 17 and Ap-
pendix O). For BM, confidence intervals corresponded
to the highest probability density (more accurate than
the 2.5% and 97.5% quantiles, see Gazey & Staley 1986).
For ACM, the confidence intervals were constructed from
the standard deviation of the distribution of estimates
over the 50 permutations with the classical equation
95% CI = 2 × 1.96 × SD√

Nit
, where SD is the standard de-

viation of estimates over the 50 iterations and Nit is the
number of iterations (Nit = 50).
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Results

Estimates from the Six Methods Based on Sample Identities

The accumulation-curve method used in Kohn et al.
(1999) gave the most biased estimates in all sampling-
effort conditions. Mean bias ranged from 136% for sam-
pling effort n = 300 to 266% for sampling effort n = 50.
The MSE for this method was at least 8 (and up to 200)
times greater than for the other methods, whatever the
sampling effort. The ACM-Kohn was thus removed from
further analyses.

For all methods, MSE, bias, and variance decreased as
sampling effort increased (Fig. 1). All methods overesti-
mated population size for sample sizes up to n = 150 (bias
> 0, Fig. 1). Overall, the bias became negligible at n = 150,
and the variance became negligible at n = 300. Difference
in MSE between methods seemed to become negligible
when sampling effort was higher than n = 150. However,
for n = 50, the lowest sampling effort, ACM-Eggert gave
the worst results and BM-single and ACM-Chessel yielded
the best results (with small difference with BM-multiple
and MLM-M0). The poor performance of ACM-Eggert at
small sample sizes was explained by both a higher bias
and a higher variance than other methods. This method
was consistently more biased than the others up to n =
150.

As expected, the width of the confidence intervals
tended to decrease as sampling effort increased (Fig. 2).
For n = 50, ACM-Eggert and ACM-Chessel had narrower
confidence intervals than other methods. However, and
perhaps as a consequence, for these two methods, the
true population size was included in confidence inter-
vals in only 9.5–42% of simulations, whatever the sam-
pling size (Fig. 3). For the three other methods (MLM-M0,
BM-multiple, and BM-single), this proportion was at least
82%.

Estimates Obtained from Consensus Genotypes

With initial allelic dropout and false allele error rates re-
spectively set to 0.3 and 0.1, the mean percentage of

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Figure 1. Minimum squared error (MSE), bias, and
variance for each method of population size
estimation (MLM-M0, maximum-likelihood method,
model M0 of Otis et al. [1978]; ACM-Chessel and
ACM-Eggert, accumulation-curve methods, equations
given by D. Chessel [personal communication] and
Eggert et al. [2003]; BM-multiple and BM-single,
Bayesian methods developed for multiple- or
single-session sampling schemes respectively [Gazey &
Staley 1986]) and sampling-effort modality.
Population size estimates based on sample identities
(SPL).
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Figure 2. Width of confidence
intervals (mean over all
iterations ± SD) for each method
of population size estimation
(MLM-MO, ACM-Chessel,
ACM-Effert, BM-multiple,
BM-single) in each
sampling-effort modality. See
Fig.1 legend for definitions of
abbreviations of methods of
population size estimation.

correct identifications was 8.9 ± 2.83 (0–18%) for the
uncorrected genotypes (i.e., genotypes read from step 3
of the simulation process) and 99.3 ± 0.85 (94–100%) for
the consensus genotypes (i.e., genotypes built after step 4
of the simulation process for each locus from the compari-
son of the eight amplifications simulated for each sample).
The multilocus residual error rates after correction was

Figure 3. Proportion of
simulations of surveys of
population size for which the true
population size is included in the
95% CI for each estimation
method (MLM-MO, ACM-Chessel,
ACM-Effert, BM-multiple,
BM-single; sample identities, solid
lines; consensus genotypes,
dashed lines). See Fig.1 legend for
definitions of abbreviations of
methods of population size
estimation.

always below 6% and averaged 0.7%. The effect of resid-
ual errors after eight PCR amplifications on population
size estimation was between 1.5% and 3.5%, depending
on the method and sample size (Fig. 4).

The average population size estimates from sample
identities and consensus genotypes were significantly dif-
ferent from each other only in the case of the highest
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Figure 4. Bias introduced by
genotyping errors relative to
estimates of population size
obtained from sample identities.
Relative bias was computed as
100 × (CONS-SPL)/SPL, where SPL
is the estimate of population size
obtained from sample identities
and CONS is the estimate of
population size obtained from
consensus genotypes. See Fig.1
legend for definitions of
abbreviations of methods of
population size estimation
(MLM-MO, ACM-Chessel, ACM-Effert,
BM-multiple, BM-single). Data are
from Table 2.

sampling efforts for all methods (Table 2). The MSE for
estimates from consensus genotypes were slightly higher
than estimates from sample identities, and this was mainly
due to a higher bias for consensus genotypes compared
with sample identities, especially for the highest sampling
effort (n = 150 and n = 300, Fig. 5). Nevertheless, dif-
ferences were always below 3.5% (Fig. 4), even in the
cases where both estimates were significantly different
from each other. For sample sizes 50, 100, and 150, these
biases resulted in a slight decrease of the percentage of
simulations for which the 95% CI of the estimators in-
cluded the parametric value of N (Fig. 3). For n = 300,
this decrease was more pronounced and reached 28% for
the maximum-likelihood estimator.

Discussion

As Pollock et al. (1990) stated, the first constraint when
planning a survey of population size is the study design
and the sampling method. Two solutions could be used:
collecting samples on a single occasion or collecting sam-
ples on several occasions. These two sampling methods
imply very different constraints in the field. Whereas the
multisession method requires spatial and temporal plans
to be set up (grid size, capture probability, number of ses-
sions, frequencies of sampling [Otis et al. 1978; Mowat
& Strobeck 2000]), the single-session method could be
performed without such constraint. The single-session

Table 2. Means of the population size estimates (true N is 100) for
the six methods we evaluated and for the different sampling-effort
modalities for estimates based on sample identities (SPL) and
estimates based on consensus genotypes (CONS).

Sampling
Methoda effort Mean SPL Mean CONS pb

MLM-M0 50 104.26 106.00 0.631
100 100.21 101.90 0.228
150 100.07 101.83 0.0281
300 99.67 102.155 <0.0001

ACM-Chessel 50 107.06 108.63 0.618
100 101.26 102.91 0.182
150 100.66 102.28 0.037
300 100.18 102.19 <0.0001

ACM-Eggert 50 130.32 134.93 0.336
100 103.95 106.17 0.111
150 101.84 103.84 0.001
300 100.45 102.68 <0.0001

BM-multiple 50 106.48 108.49 0.584
100 101.20 102.91 0.233
150 100.58 102.44 0.0214
300 100.01 102.44 <0.0001

BM-single 50 104.40 106.06 0.585
100 100.33 101.98 0.180
150 100.06 101.88 0.0153
300 99.67 101.99 <0.0001

aAbbreviations: MLM-M0, maximum-likelihood method, model M0
of Otis et al. (1978); ACM-Chessel and ACM-Eggert,
accumulation-curve methods, equations given by D. Chessel
(personal communication) and Eggert et al. (2003); BM-multiple
and BM-single, Bayesian methods developed for multiple- or
single-session sampling schemes (Gazey & Staley 1986).
bResults of t tests between mean estimates from sample identities
(SPL) and consensus genotypes (CONS) are given.
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method thus has a practical advantage over the multises-
sion method because the user will select the protocol that
involves less difficulty in the field. However, it is worth
noting that even though the single-session method has
a great advantage in the field, this sampling method is
only dedicated to population size estimation. Indeed, this
method could not be used to assess survival and recruit-
ment parameters as for the multisession method (Lebre-
ton et al. 1992; Pradel & Lebreton 1999). The choice of
the sampling method will thus also be constrained by the
purpose of the study.

In practice, sampling during only one session versus
sampling over two or more sessions can be seen as an ar-
bitrary classification. Sometimes, the number of sessions
is defined a posteriori, without any reference to a sam-
pling scheme. In noninvasive CMR studies so far, samples
have been collected without interruption over days (e.g.,
Kohn et al. 1999; Banks et al. 2003; Wilson et al. 2003)
or tens of days (e.g., Mowat & Strobeck 2000; Mowat &
Paetkau 2002; Prugh et al. 2005) and have then been an-
alyzed with accumulation-curve methods, the total sam-
pling period corresponding to a single sampling session
(Kohn et al. 1999; Wilson et al. 2003), or with classical
CMR models (Otis et al. 1978), the sampling period being
arbitrarily split into several sampling sessions correspond-
ing to days (Banks et al. 2003; Wilson et al. 2003), weeks
(Mowat & Strobeck 2000; Mowat & Paetkau 2002), or
months (Prugh et al. 2005). There thus seems to be lit-
tle justification to distinguish between single-session and
multisession methods.

There are however three reasons why such a distinction
is useful, especially in the context of noninvasive CMR.
First, analytical models available for the analysis of multi-
session CMR experiments (such as MLM-M0) allow each
individual to be captured only once during a given capture
session. In contrast, the Bayesian procedure we adapted
to single-session experiments takes into account all re-
captures. Because noninvasive sampling frequently yields
multiple captures for a single individual during a sampling
session, not taking these recaptures into account would
result in a loss of information.

Second, sampling and analyzing data over multiple ses-
sions implicitly implies that samples taken during the dif-
ferent sampling sessions are independent of each other.
This is particularly problematic when sampling feces in

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Figure 5. Minimum squared error (MSE), bias, and
variance for population size estimates from sample
identities (SPL) and consensus genotypes (CONS).
Solid lines show SPL = CONS. See Fig.1 legend for
definitions of abbreviations of methods of population
size estimation (MLM-MO, ACM-Chessel, ACM-Effert,
BM-multiple, BM-single). The n values in the key
correspond to the different sampling-effort modalities.
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the field. Depending on species and environmental con-
ditions, feces can persist a very long time (100 days for
forest elephants, Eggert et al. 2003; years for European
bats, E.P., personal observation), so samples taken during
a given sampling session may have been laid down at a
time corresponding to another sampling session. Possible
precautions include sampling only fresh feces, which re-
duces nonindependence between sampling sessions but
can reduce dramatically the number of available samples,
or sampling over sessions separated by great time periods,
which dramatically reduces the probability of population
closure. Alternatively, not having to split sampling periods
into different sessions avoids the problem of nonindepen-
dence between sampling sessions when collecting feces
in the field.

Third, for species in which feces are accumulated in
latrines, such as badgers (Wilson et al. 2003), or roosts,
such as bats, a representative sample of a population can
be obtained if feces are collected over a sampling pe-
riod that allows all individuals of the population an equal
chance of having defecated in the site that is sampled.
If N is to be estimated with classical methods, this work
has to be repeated one or more times. Again, this de-
creases the probability of population closure. Within one
sampling period, however, enough material is gathered
to yield an estimate of N with analytical tools suitable for
single-session method.

Using simulations, we showed that population size es-
timates based on single-session sampling are as reliable as
estimates based on multisession sampling. Indeed, two of
the three accumulation-curve equations and the Bayesian
algorithm for single-session sampling estimated popula-
tion size with a MSE comparable to the MSE of the classi-
cal M0 maximum-likelihood model or the Bayesian algo-
rithm for multisession sampling. The Bayesian estimator
that was adapted to both single-session and multisession
sampling schemes even showed less bias and less vari-
ance in the case of single-session sampling. Among the
three equations for accumulation curves we evaluated,
the method proposed by Kohn et al. (1999) proved to be
highly biased under the conditions tested. This supports
results published by Eggert et al. (2003), who proposed a
second equation that performed well only if sample size
was large. In all sampling situations, the equation of ACM
that worked best was that proposed by D. Chessel, which
had almost the same bias and variance as the Bayesian es-
timator for single-session sampling but a narrower 95%
CI under the conditions tested. This confidence interval,
however, did not encompass the parameter’s true value
in 60–80% of the simulations. Overall, Bayesian estima-
tors behaved better than other methods. This behavior
may be due to the fact that the Bayesian method explic-
itly models the capture–recapture process, which is not
the case of accumulation-curve methods, and it uses more
information from the data than the maximum-likelihood
estimator of N.

The need for the correction of genotyping error is es-
sential in all studies in which noninvasive genetic sam-
pling is used (Taberlet et al. 1999; Paetkau 2003). The
most important step is the pilot study, which should be
conducted before any large-scale study (Taberlet et al.
1999). The aim of the pilot study is to investigate fea-
sibility and to estimate genotyping error rates (Broquet
& Petit 2004). These estimates are then used to define
the minimum number of PCR amplifications per sample
and locus to be performed to correct for genotyping er-
rors (Valière 2002). Our results showed that despite the
large number of PCR amplifications (eight) used, resid-
ual errors remained and could marginally bias population
size estimates. In correlation with its higher bias for small
sample sizes, the ACM-Eggert was the most sensitive to
genotyping errors with small sample sizes (Fig. 4). As ex-
pected, the bias introduced by residual errors increased
with sample size because the more samples that are an-
alyzed, the more likely is it to create spurious genotypes
due to residual genotyping errors (see also Waits & Leberg
2000). Nevertheless, even with a sampling effort as high
as three times the population size, the bias hardly reached
2.5% and inclusion of the true value of N in 95% CI was
only slightly altered by residual errors (except for MLM-
M0 under conditions of high sampling). The bias was al-
ways positive, showing that, as expected, genotyping er-
rors had more influence than the shadow effect in our
simulations. This is likely to be the case in most realis-
tic situations in which enough polymorphic markers are
used to discriminate between related individuals.

Even if the error rates used in the simulations (allelic
dropout = 0.3 and false alleles = 0.1) were in the upper
part of the range of the error rates published in noninva-
sive studies, the bias introduced by using molecular tags
was negligible. Again, cautious estimation of error rates
and determination of the minimum number of PCR ampli-
fications are required to lower genotyping errors (Valière
2002) and will be of prime importance to minimize the
associated bias (see also Waits & Leberg 2000; Paetkau
2003). The figures we provide, however, are conservative
because residual genotypic error rates reported in pub-
lished noninvasive CMR surveys amount to a maximum
of 0.39% (Kohn et al. 1999; Eggert et al. 2003; Paetkau
2003; Frantz et al. 2004; Prugh et al. 2005), whereas it
was on average 0.7% in our simulation study.

The use of noninvasive sampling methods offers the
possibility to estimate population size when individuals
are difficult to catch. This approach could be extended to
any species because, besides yielding reliable estimates of
the parameter of interest, it has other interesting proper-
ties that are directly linked to the total absence of animal
disturbance. All the estimation methods we used rely on
a number of assumptions: (1) the population is stable and
closed, (2) capture probability does not vary among indi-
viduals, (3) capture probability does not vary with time,
(4) marks are not lost, and (5) marks do not alter behavior.
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By definition, molecular tags are marks that cannot be lost
or alter the behavior of animals. Furthermore, the absence
of handling removes the problem of the effect of capture
history on subsequent catchability (Cormack 1966). In a
closed population, the sources of heterogeneity that are
thus likely to affect population size estimates based on
noninvasive sampling are the time and individual com-
ponents. We already showed that single-session sampling
reduces the probability of violating the population clo-
sure assumption in noninvasive studies because periods
of sampling can be limited when compared with multises-
sion sampling. For the same reason, the time component
of heterogeneity is also reduced with single-session sam-
pling compared with multisession sampling.

Individual heterogeneity however remains unchanged.
For example, scent-marking behavior may vary accord-
ing to sex or age, making it more likely to find samples
belonging to the individuals with the more conspicu-
ous behaviors in comparison with others. Models have
been built to take heterogeneity into account (Otis et
al. 1978). There are however two main problems that
remain. First, available analytical tools do not allow the
identification of N when heterogeneity is present (Link
2003). Various distributions of capture heterogeneity can
most often fit equally well a given empirical data set, but
these different distributions can yield population size esti-
mates that significantly differ from each other (Link 2003).
Second, these models of capture heterogeneity were de-
veloped for multisession sampling, and we are aware of
only one recent attempt to model capture heterogene-
ity for single-session sampling, but only for small pop-
ulation sizes (Miller et al. 2005). A step forward in the
analysis of CMR data from single-session sampling exper-
iments would thus be to incorporate individual hetero-
geneity in capture probability, for example in the sequen-
tial Bayesian framework developed by Gazey and Staley
(1986).

Our preliminary results showed that individual hetero-
geneity leads to biased population size estimates in single-
session experiments, just as it does in multisession CMR
(Miller et al. 2005; N.V. and E.P., unpublished data). Sam-
pling schemes should thus be designed carefully to min-
imize known sources of individual sampling heterogene-
ity, which are most often related to differences in sex,
age, size, or reproductive status. Noninvasive sampling
allows sex to be recorded using molecular techniques
(e.g., Bradley et al. 2001). When feces are the source of
DNA, they can also be used to infer the reproductive sta-
tus of the individual that defecated (Garnier et al. 2001).
Other means to increase the homogeneity of the sampled
population require the researcher to have some knowl-
edge of the biology of the species being investigated so
that he or she can choose a period and a place where
individuals of similar status are likely to gather. For in-
stance, in most European bat species, before females give
birth nurseries are closed entities that consist mainly of

adult females, whereas individuals of different ages and
sexes mix in hibernacula or swarming sites. Finally, be-
fore running analyses of population size estimates, data
sets should be checked for heterogeneity (Miller et al.
2005; S. Puechmaille and E.P., unpublished data).

Population size is a parameter of paramount impor-
tance in both fundamental and applied population biol-
ogy. The ability to reliably estimate population size from
noninvasive samples taken during single-session sampling
experiments is thus a promising step toward increased
knowledge of elusive species and better management
policies for endangered species.
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